Cystathionine β-Synthase p.S466L Mutation Causes Hyperhomocysteinemia in Mice

نویسندگان

  • Sapna Gupta
  • Liqun Wang
  • Xiang Hua
  • Jakub Krijt
  • Viktor Kožich
  • Warren D. Kruger
چکیده

Missense mutations in the cystathionine beta-synthase (CBS) gene are the most common cause of clinical homocystinuria in humans. The p.S466L mutation was identified in a homocystinuric patient, but enzymatic studies with recombinant protein show this mutant to be highly active. To understand how this mutation causes disease in vivo, we have created mice lacking endogenous mouse CBS and expressing either wild-type (Tg-hCBS) or p.S466L (Tg-S466L) human CBS under control of zinc inducible metallothionein promoter. In the presence of zinc, we found that the mean serum total homocysteine (tHcy) of Tg-S466L mice was 142+/-55 microM compared to 16+/-13 microM for hCBS mice. Tg-S466L mice also had significantly higher levels of total free homocysteine and S-adenosylhomocysteine in liver and kidney. Only 48% of Tg-S466L mice had detectable CBS protein in the liver, whereas all the Tg-hCBS animals had detectable protein. Surprisingly, CBS mRNA was significantly elevated in Tg-S466L animals compared to Tg-hCBS, implying that the reduction in p.S466L protein was occurring due to posttranscriptional mechanisms. In Tg-S466L animals with detectable liver CBS, the enzyme formed tetramers and was active, but lacked inducibility by S-adenosylmethionine (AdoMet). However, even in Tg-S466L animals that had in vitro liver CBS activity equivalent to Tg-hCBS animals there was significant elevation of serum tHcy. Our results show that p.S466L causes homocystinuria by affecting both the steady state level of CBS protein and by reducing the efficiency of the enzyme in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Severe hyperhomocysteinemia due to cystathionine β-synthase deficiency, and Factor V Leiden mutation in a patient with recurrent venous thrombosis

Homocysteine is an amino acid that is toxic to vascular endothelial cells, and plasma elevations have been associated with venous thromboembolism. Severe hyperhomocysteinemia (>100 μmol/L) may result from mutations in the genes coding for enzymes in the trans-sulfuration or the folate/vitamin B12-dependent re-methylation pathways. Here, we report the case of a young woman with severe, recurrent...

متن کامل

Alleviation of Plasma Homocysteine Level by Phytoestrogen α-Zearalanol Might Be Related to the Reduction of Cystathionine β-Synthase Nitration

Hyperhomocysteinemia is strongly associated with cardiovascular diseases. Previous studies have shown that phytoestrogen α-zearalanol can protect cardiovascular system from hyperhomocysteinemia and ameliorate the level of plasma total homocysteine; however, the underlying mechanisms remain to be clarified. The aim of this research is to investigate the possible molecular mechanisms involved in ...

متن کامل

Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase

Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and As...

متن کامل

Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta-synthase-deficient mice.

Hyperhomocysteinemia is a risk factor for stroke, myocardial infarction, and venous thrombosis. Moderate hyperhomocysteinemia is associated with impaired endothelial function, but the mechanisms responsible for endothelial dysfunction in hyperhomocysteinemia are poorly understood. We have used genetic and dietary approaches to produce hyperhomocysteinemia in mice. Heterozygous cystathionine bet...

متن کامل

Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites.

Hyperhomocysteinemia has been reported in human reproduction as a risk factor for early pregnancy loss, preeclampsia, and congenital birth defects like spina bifida. Female infertility was also observed in cystathionine beta synthase-deficient mice (Cbs-KO) as an animal model for severe hyperhomocysteinemia. The aim for the present research was to elucidate the time-point of pregnancy loss and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human Mutation

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008